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Current Distribution and Random Matrix Ensembles
for an Integrable Asymmetric Fragmentation Process
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We calculate the time-evolution of a discrete-time fragmentation process in
which clusters of particles break up and reassemble and move stochastically
with size-dependent rates. In the continuous-time limit the process turns into
the totally asymmetric simple exclusion process (only pieces of size 1 break off
a given cluster). We express the exact solution of the master equation for the
process in terms of a determinant which can be derived using the Bethe an-
satz. From this determinant we compute the distribution of the current across
an arbitrary bond which after appropriate scaling is given by the distribution
of the largest eigenvalue of the Gaussian unitary ensemble of random matrices.
This result confirms universality of the scaling form of the current distribution
in the KPZ universality class and suggests that there is a link between integra-
ble particle systems and random matrix ensembles.

KEY WORDS: Asymmetric exclusion processes; current distribution; Bethe
ansatz; KPZ university class.

1. INTRODUCTION

Asymmetric exclusion processes are paradigmatic models for systems far
from equilibrium, both for their wide range of applications and the avail-
ability of exact results(1,2). Despite their greatly reduced complexity they
capture various generic nonequilibrium phenomena such as the occurrence
of shocks and particle condensation(3–5). A major breakthrough in the
exact calculation of universal properties came with the realization that var-
ious ensembles of random matrices occur in the study of current fluctu-
ations and related quantities in the totally asymmetric simple exclusion
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a.rakos@fz-juelich.de

511

0022-4715/05/0200-0511/0 © 2005 Springer Science+Business Media, Inc.



512 Rákos and Schütz

process (TASEP)(6,7) and also in the polynuclear growth model(8–11). Here
we use results from random matrix theory combined with the Bethe an-
satz to study a process introduced by Brankov et al.(12) which describes
the stochastic fragmentation and reassembly of diffusing particle clusters
in discrete time. Alternatively it may be regarded as a totally asymmetric
exclusion process with ordered sequential update.

In the totally asymmetric fragmentation process(12) one considers a
one-dimensional lattice where each lattice point is occupied by at most one
particle. A string of n consecutive particles (and bounded by empty sites)
is considered a cluster of size n. The stochastic time evolution occurs in
discrete time steps. From each cluster a piece of size n′ <n may break off
and move to the right by one lattice unit with probability (1−p)pn′

. The
whole cluster may hop with probability pn. According to this definition
the transition rules are the following:

0AA. . .AAA
︸ ︷︷ ︸

n

0→0AA. . .AA
︸ ︷︷ ︸

n−1

0A with probability p(1−p)

0AA. . .AAA
︸ ︷︷ ︸

n

0→0AA. . .A
︸ ︷︷ ︸

n−2

0AA with probability p2(1−p)

...

0AA. . .AAA
︸ ︷︷ ︸

n

0→0A0A. . .AAA
︸ ︷︷ ︸

n−1

with probability pn−1(1−p)

0AA. . .AAA
︸ ︷︷ ︸

n

0→00AA. . .AAA
︸ ︷︷ ︸

n

with probability pn.

Notice that two clusters can merge through hopping if they are separated
by only one vacant site. Other fragmentation processes have been studied
recently(13–16).

In the noiseless limit p = 1 neither fragmentation nor recombination
occurs and all clusters move ballistically with probability 1. In the limit
p → 0 with an appropriate rescaling of time (t → ∞ with t ′ = pt fixed)
only pieces of size 1, i.e., single particles may break off. This process is
equivalent to the usual TASEP. In discrete time the fragmentation process
may be interpreted as an asymmetric exclusion process with long-range
hopping. This is forbidden in the usual discrete-time TASEP with parallel
update studied in ref. 6. Moreover, the fragmentation process has no par-
ticle-hole symmetry and the stationary distribution is a product measure
with constant density ρ and stationary current(12)

j =p
ρ(1−ρ)

1−pρ
. (1)
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The absence of correlations implies that fragmentation and recombination
balance each other such that no condensation into macroscopic clusters
occurs. Indeed, our interest is not in the stationary state of the system but
how it evolves from a fully “phase-separated” initial state where the left
half of the infinite lattice (all sites k � 0) is occupied while the right half
(all sites k >0) is vacant.

Under Eulerian scaling (lattice constant a and time step τ tend to
zero with the ratio a/τ kept constant) one expects the coarse-grained den-
sity ρ(x, t) to be governed by the hydrodynamic conservation law

∂tρ + ∂xj (ρ)=0 (2)

with the macroscopic current (1). Our interest is in the microscopic fluc-
tuations of the current which after appropriate rescaling is expected to be
given by an universal scaling function. In particular, one obtains universal
corrections to (2) below the Euler scale.

In Section 2 we first consider the continuous-time limit of the model,
i.e., the TASEP. We present a new derivation of the result Eq. (1.18)
of ref. 6 for the exact distribution of the time-integrated current. We do
not use the combinatorial arguments employed by Johansson, but show
how the same expression can be obtained logically independently from the
Bethe ansatz solution via the determinant expression of ref. 17. In Sec-
tion 3 we extend this approach to calculate the current distribution for the
fragmentation process with arbitrary fragmentation parameter p. In Sec-
tion 4 we present some conclusions. Some properties of the functions we
use in the calculation are given in the appendices.

2. CONTINUOUS TIME TASEP

2.1. Known Results

2.1.1. Current Fluctuations

Consider the TASEP on an infinite chain in continuous time where
particles hop to the right with rate 1, provided the target site is vacant.
At t = 0 the left half of the system (from site −∞ to site 0) is occupied
while the right half is empty. We focus on the probability P(M,N, t) that
the N th particle (which was on the (1 − N)th site of the infinite cluster
at t = 0) hops at least M times up to time t . Using combinatorial argu-
ments involving the longest increasing subsequences of random permuta-
tions Johansson has proved (Eq. (1.18) in ref. 6)
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P(M,N, t)= 1
Z′

M,N

∫

[0,t ]N

∏

1�i<j�N

(xi −xj )
2

N
∏

j=1

xM−N
j e−xj dNx (3)

for M �N . To have proper normalization the partition sum has to be

Z′
M,N =

∫

[0,∞]N

∏

1�i<j�N

(xi −xj )
2

N
∏

j=1

xM−N
j e−xj dNx. (4)

The expression (3) is equal to the probability that the largest eigenvalue
of a random matrix AA∗ is � t where A is a N × M matrix of complex
Gaussian random variables with mean zero and variance 1/2(18).

Let J (x, t) be the number of particles that have crossed the lattice
bond (x, x +1) up to time t , i.e., the time-integrated current. By construc-
tion one has for the probability that J (x, t)>m

Prob [J (x, t)>m]=P(m+x +1,m+1, t) for x �0. (5)

2.1.2. Bethe ansatz

Consider the TASEP on the infinite chain with a finite (N ) number
of particles located initially at sites AN ={l1, l2, . . . , lN } (l1 <l2 < · · ·<lN ).
It is proved in ref. 17 that the probability of having these particles on
sites BN = {k1, k2, . . . , kN } (k1 < k2 < · · · < kN ) at time t is given by the
determinant

Q(AN,BN ; t)=

∣

∣

∣

∣

∣

∣

∣

∣

∣

F0(k1 − l1; t) F−1(k1 − l2; t) · · · F−N+1(k1 − lN ; t)

F1(k2 − l1; t) F0(k2 − l2; t) · · · F−N+2(k2 − lN ; t)
...

...
...

FN−1(kN − l1; t) FN−2(kN − l2; t) · · · F0(kN − lN ; t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(6)

For the definition and some properties of the Fp(n; t) functions see
Appendix 4.

The determinant has been obtained from a coordinate Bethe ansatz
for the conditional probability Q(AN,BN ; t). Given the determinant, the
proof that it is the solution of the master equation for the TASEP follows
from standard relations for determinants, for details see ref. 17. In the next
subsection we show how (3) can be derived directly from (6) without ref-
erence to combinatorial properties of the process.
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2.2. Calculation

The dynamics of the rightmost N particles in the TASEP are inde-
pendent of all particles to their left. Therefore P(M,N, t) of Section 2.1.1
can be expressed via Q(AN,BN ; t) of Section 2.1.2:

P(M,N, t) =
∑

M−N<k1<k2<...<kN

Q({−N +1,−N +2, . . . ,0},

{k1, k2, . . . , kN }; t). (7)

Inserting (3) and (6) one gets

1
Z′

M,N

∫

[0,t ]N

∏

1�i<j�N

(xi −xj )
2

N
∏

j=1

xM−N
j e−xj dNx

=
∑

M−N<k1<k2<···<kN

∣

∣

∣

∣

∣

∣

∣

∣

∣

F0(k1 +N −1;t) F−1(k1 +N −2;t) ··· F−N+1(k1;t)
F1(k2 +N −1;t) F0(k2 +N −2;t) ··· F−N+2(k2;t)

...
...

...

FN−1(kN +N −1;t) FN−2(kN +N −2;t) ··· F0(kN ;t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(8)

In what follows we show by determinant manipulations and using proper-
ties of the functions Fk that this equality holds.

Our starting point is the rhs of (8). The summation over (k1, k2, . . . ,

kN) can be done in N steps for which we choose the following sequence:

∑

M−N<k1<k2<···<kN

=
∞
∑

kN=M

kN−1
∑

kN−1=M−1

· · ·
k3−1
∑

k2=M−N+2

k2−1
∑

k1=M−N+1

. (9)

After summation over k1 (for which we use (A.5)) the first row of the
matrix becomes

F1(M; t)−F1(k2 +N −1; t) F0(M −1; t)−F0(k2 +N −2; t) · · ·
F−N+2(M −N +1; t)−F−N+2(k2; t), (10)

which reduces to

F1(M; t) F0(M −1; t) · · ·F−N+2(M −N +1; t) (11)
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after adding the second row to it. The same method can be used up to the
sum over kN−1. For the last sum we use (A.7) and finally we get

∣

∣

∣

∣

∣

∣

∣

∣

∣

F1(M; t) F0(M −1; t) · · · F−N+2(M −N +1; t)

F2(M +1; t) F1(M; t) · · · F−N+3(M −N +2; t)
...

...
...

FN(M +N −1; t) FN−1(M +N −2; t) · · · F1(M; t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(12)

for the rhs of (8).
It turns out to be useful to represent all the F functions in (12) by an

integral using (A.4). Since for M �N all are zero at t =0 the determinant
(12) can be written as

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0 F0(M −1; τ)dτ
∫ t

0 F−1(M −2; τ)dτ · · · ∫ t

0 F−N+1(M −N; τ)dτ
∫ t

0 F1(M; τ)dτ
∫ t

0 F0(M −1; τ)dτ · · · ∫ t

0 F−N+2(M −N +1; τ)dτ

.

.

.
.
.
.

.

.

.∫ t

0 FN−1(M +N −2; τ)dτ
∫ t

0 FN−2(M +N −3; τ)dτ · · · ∫ t

0 F0(M −1; τ)dτ

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(13)

In the second row we perform a partial integration after which the ith ele-
ment becomes

tF2−i (M − i +1; t)−
∫ t

0
τF1−i (M − i; τ)dτ. (14)

Note that the constant part is t times the corresponding element of the
first row so after subtracting t times the first row the second row becomes

−
∫ t

0
τF0(M −1; τ)dτ −

∫ t

0
τF−1(M −2; τ)dτ · · ·

−
∫ t

0
τF−N+1(M −N; τ)dτ. (15)

In the third row we perform a double partial integration. Then we add
t2/2 times the first row and subtract t times the (original) second row.
Repeating the same procedure for all of the rows we get
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0 F0(M −1; τ)dτ
∫ t

0 F−1(M −2; τ)dτ · · · ∫ t

0 F−N+1(M −N; τ)dτ

− ∫ t

0 τF0(M −1; τ)dτ − ∫ t

0 τF−1(M −2; τ)dτ · · · − ∫ t

0 τF−N+1(M −N; τ)dτ
1
2

∫ t

0 τ 2F0(M −1; τ)dτ 1
2

∫ t

0 τ 2F−1(M −2; τ)dτ · · · 1
2

∫ t

0 τ 2F−N+1(M −N; τ)dτ

− 1
3!

∫ t

0 τ 3F0(M −1; τ)dτ − 1
3!

∫ t

0 τ 3F−1(M −2; τ)dτ · · · − 1
3!

∫ t

0 τ 3F−N+1(M −N; τ)dτ

.

.

.
.
.
.

.

.

.±1
(N−1)!

∫ t

0 τN−1F0(M −1; τ)dτ ±1
(N−1)!

∫ t

0 τN−1F−1(M −2; τ)dτ · · · ±1
(N−1)!

∫ t

0 τN−1F−N+1(M −N; τ)dτ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)[
N
2 ]

N−1
∏

i=1

1
i!

∫

[0,t ]N
τ 0

1 τ 1
2 τ 2

3 τ 3
4 · · · τN−1

N

∣

∣

∣

∣

∣

∣

∣

∣

∣

F0(M −1; τ1) F−1(M −2; τ1) · · · F−N+1(M −N; τ1)
F0(M −1; τ2) F−1(M −2; τ2) · · · F−N+1(M −N; τ2)
F0(M −1; τ3) F−1(M −2; τ3) · · · F−N+1(M −N; τ3)

.

.

.
.
.
.

.

.

.
F0(M −1; τN ) F−1(M −2; τN ) · · · F−N+1(M −N; τN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

dNτ.

(16)

Using (A.6) we can rewrite F−1(M − 2; τi) as F0(M − 2; τi)−F0(M −
1; τi). So adding the first column to the second one the ith element of the
latter becomes F0(M −2; τi). Similar transformations can be done with the
other columns as well: since according to (A.8)

Fp(n; t)=
−p
∑

m=0

(−1)m
(−p

m

)

F0(n+m; t) for p �0, (17)

one can add suitable linear combinations of the first l −1 columns to the
lth one so that the ith element of the lth column becomes

F0(M − l; τi)= e−τi
τM−l
i

(M − l)!
. (18)

After these transformations one gets for (16):

(−1)

[

N
2

] N−1
∏

i=1

1
i!

N
∏

i=1

1
(M − i)!

×
∫

[0,t ]N

N
∏

i=1

(

τM−N
i e−τi

)

τ 0
1 τ 1

2 τ 2
3 τ 3

4 · · · τN−1
N

∣

∣

∣

∣

∣

∣

∣

∣

∣

τN−1
1 τN−2

1 · · · τ 1
1 τ 0

1
τN−1

2 τN−2
2 · · · τ 1

2 τ 0
2

...
...

...
...

τN−1
N τN−2

N · · · τ 1
N τ 0

N

∣

∣

∣

∣

∣

∣

∣

∣

∣

dNτ.

(19)
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Since the integration is symmetric in the τi while the determinant is
antisymmetric we may replace the product of the τi by the antisymmetric
combination

1
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

τ 0
1 τ 1

1 · · · τN−2
1 τN−1

1
τ 0

2 τ 1
2 · · · τN−2

2 τN−1
2

...
...

...
...

τ 0
N τ 1

N · · · τN−2
N τN−1

N

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)

[

N
2

]

N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

τN−1
1 τN−2

1 · · · τ 1
1 τ 0

1
τN−1

2 τN−2
2 · · · τ 1

2 τ 0
2

...
...

...
...

τN−1
N τN−2

N · · · τ 1
N τ 0

N

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(20)

This is the Vandermonde determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

τN−1
1 τN−2

1 · · · τ 1
1 τ 0

1
τN−1

2 τN−2
2 · · · τ 1

2 τ 0
2

...
...

...
...

τN−1
N τN−2

N · · · τ 1
N τ 0

N

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∏

1�i<j�N

(τi − τj ) (21)

and leads to

P(M,N, t)=
N
∏

i=1

(

1
i!(M − i)!

)∫

[0,t ]N

N
∏

i=1

(

τM−N
i e−τi

)
∏

1�i<j�N

(τi − τj )
2dNτ.

(22)

This is in agreement with the lhs of (8), moreover we get the partition
function as a “by-product”:

Z′
M,N =

N
∏

i=1

i!(M − i)! (23)

2.3. Asymptotic Form of the Density Profile

For the TASEP the current (1) reduces to j =ρ(1−ρ) and the density
profile of the step-function initial state evolves on Euler scale according to

ρ(x, t)= 1
2

(1−v) (24)

where v = x/t and −1 � v � 1(19). Outside this range the density keeps its
initial value.
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To describe the density profile below Euler scale we use the asymp-
totic form of the result (5) for the current distribution. It can be shown
that that the formula (22) can be written as a Fredholm determinant with
the Meixner kernel which in a proper limit reduces to the Airy kernel (for
details see ref. 6). This implies that in this limit the asymptotic form of
P(M,N, t) is given by the Tracy and Widom distribution(20) of the Gauss-
ian unitary ensemble (FGUE), viz.

lim
N→∞

P([γN ],N,ω(γ )N +σ(γ )N1/3s)=FGUE(s) (25)

with

ω(γ )= (1+√
γ
)2 and σ(γ )=γ −1/6 (1+√

γ
)4/3

. (26)

This type of scaling is characteristic for one-dimensional surface-growth
models of the KPZ universality class(8).

For our initial state the integrated current J (x, t) gives the number of
particles being at sites k > x at time t (for x � 0). It can be shown using
Theorem 1.6 of ref. 6 that

lim
t→∞ Prob

[

J ([vt ], t)� t

4
(1−v)2 +2−4/3

(

1−v2
)2/3

t1/3s

]

=1−FGUE(−s)

(27)

for 0�v <1. Because of particle-hole symmetry, one has a similar expres-
sion for −1<v �0.

We can also consider the corresponding surface growth model where
h(x, t) is defined as

h(x, t)=|x|+2J (x, t). (28)

The asymptotic mean shape of h([vt ], t)/t = (1 + v2)/2 on Euler scale fol-
lows directly from (24). The deviations can be calculated from (27):

lim
t→∞ Prob

[

t

2
(1+v2)−h([vt ], t)<2−1/3

(

1−v2
)2/3

t1/3s

]

=FGUE(s)

(29)

for |v|<1. This implies that

t
2 (1+v2)−h([vt ], t)

2−1/3(1−v2)2/3t1/3
=−c, (30)
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where h(x, t) is the mean height at position x and time t , and

−c=
∫ ∞

−∞
ds s F ′

GUE(s)=−1.77109, (31)

is the mean of the distribution FGUE. Since the density ρ(x, t) is 1
2 (1 −

h(x, t)+h(x −1, t)) expression (30) allows us to calculate the correction to
the density profile (24)

ρ(vt, t)= 1−v

2
+ c

22/3

3
v
(

1−v2
)−1/3

t−2/3 (32)

for |v|<1. The KPZ exponent 2/3 appearing here is universal. Note that
the coefficient v

(

1−v2
)−1/3

diverges as v → ±1. In these singular points
we expect a t−1/2 correction(21).

3. THE DISCRETE-TIME FRAGMENTATION PROCESS

3.1. Complete Solution of the Master-equation by Bethe ansatz

The solution is very similar to the one of the continuous time TASEP.
As in ref. 17 one constructs the Bethe solution for the master equation
for the conditional probabilities and recasts the expression in terms of a
determinant. Then one proves by elementary matrix manipulations that
the analogue of Eq. (6) is the following (for details see ref. 22):

Q(AN,BN ; t)=

∣

∣

∣

∣

∣

∣

∣

∣

∣

D0(k1 − l1; t) D−1(k1 − l2; t) · · · D−N+1(k1 − lN ; t)

D1(k2 − l1; t) D0(k2 − l2; t) · · · D−N+2(k2 − lN ; t)
...

...
...

DN−1(kN − l1; t) DN−2(kN − l2; t) · · · D0(kN − lN ; t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(33)

For the definition and the main properties of the D functions see
Appendix B.

3.2. Calculation of P(M, N, t)

We follow the strategy of the previous section, but some care needs
to be taken when manipulating sums rather than the time integrals. Here
P(M,N, t) is again defined by (7) but now with the Q of (33). The sum-
mation gives the same result as for the continuous time version since the
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corresponding properties of the D functions are the same as those of the
F functions:

P(M,N, t)=

∣

∣

∣

∣

∣

∣

∣

D1(M; t) D0(M −1; t) · · · D−N+2(M −N +1; t)
D2(M +1; t) D1(M; t) · · · D−N+3(M −N +2; t)

...
...

...
DN(M +N −1; t) DN−1(M +N −2; t) · · · D1(M; t)

∣

∣

∣

∣

∣

∣

∣

.

(34)

We can represent each element by a sum over the discrete time vari-
able if M �N :

P(M,N, t)=

pN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t−1
∑

t ′=M−1

D0(M −1; t ′)
t−1
∑

t ′=M−2

D−1(M −2; t ′) · · ·
t−1
∑

t ′=M−N

D1−N (M −N; t ′)

t−1
∑

t ′=M

D1(M; t ′)
t−1
∑

t ′=M−1

D0(M −1; t ′) · · ·
t−1
∑

t ′=M−N+1

D2−N (M −N +1; t ′)

.

.

.
.
.
.

.

.

.
t−1
∑

t ′=M+N−2

DN−1(M +N −2; t ′)
t−1
∑

t ′=M+N−3

DN−2(M +N −3; t ′) · · ·
t−1
∑

t ′=M−1

D0(M −1; t ′)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(35)

Instead of the partial integration we perform partial summation here
and use the identity

t−1
∑

t ′=t1

bt ′(at ′+1 −at ′)=−
t−1
∑

t ′=t1

at ′+1(bt ′+1 −bt ′)+atbt −at1bt1 . (36)

for the second row with at = t −1:

t−1
∑

t ′=x

Dν(x, t ′) = −p

t−1
∑

t ′=x

t ′Dν−1(x −1, t ′)+ (t −1)Dν(x, t)− (x −1)Dν(x, x)

= −p

t−1
∑

t ′=x−1

t ′Dν−1(x −1, t ′)+ (t −1)Dν(x, t). (37)
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For the third row we go further and apply (36) again with at = t (t −1)/2:

−p

t−1
∑

t ′=x−1

t ′Dν−1(x −1, t ′)+ (t −1)Dν(x, t)

=p2
t−1
∑

t ′=x−1

t ′(t ′ +1)

2
Dν−2(x −2, t ′)−p

t(t −1)

2
Dν−1(x −1, t)

+p
(x −1)(x −2)

2
Dν−1(x −1.x −1)+ (t −1)Dν(x, t)

=p2
t−1
∑

t ′=x−2

t ′(t ′ +1)

2
Dν−2(x −2, t ′)−p

t(t −1)

2
Dν−1(x −1, t)

+(t −1)Dν(x, t). (38)

In the fourth row we perform the partial summation once more with at =
(t −1)t (t +1)/3! and similarly for all the rows. Finally after adding suitable
linear combination of the first n−1 rows to the n-th one we get

P(M,N, t)= p
N(N+1)

2 (−1)[
N
2 ]

0!1! · · · (N −1)!

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t−1
∑

t ′=M−1

D0(M −1; t ′)
t−1
∑

t ′=M−2

D−1(M −2; t ′) · · ·
t−1
∑

t ′=M−N

D1−N (M −N; t ′)

t−1
∑

t ′=M−1

t ′D0(M −1; t ′)
t−1
∑

t ′=M−2

t ′D−1(M −2; t ′) · · ·
t−1
∑

t ′=M−N

t ′D1−N (M −N; t ′)

.

.

.
.
.
.

.

.

.
t−1
∑

t ′=M−1

t ′N−1D0(M −1; t ′)
t−1
∑

t ′=M−2

t ′N−1D−1(M −2; t ′) · · ·
t−1
∑

t ′=M−N

t ′N−1D1−N (M −N; t ′)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(39)

We can set all the lower limits of the sums to 0 (see (B.8) and (B.10)) and
write

P(M,N, t) = p
N(N+1)

2 (−1)

[

N
2

]

0!1! · · · (N −1)!

t−1
∑

t1,t2,··· ,tN=0

t0
1 t1

2 t2
3 · · · tN−1

N

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

D0(M −1; t1) D−1(M −2; t1) · · · D1−N(M −N; t1)

D0(M −1; t2) D−1(M −2; t2) · · · D1−N(M −N; t2)
...

...
...

D0(M −1; tN ) D−1(M −2; tN ) · · · D1−N(M −N; tN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(40)
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Adding suitable linear combination of the first n− 1 columns to the n-th
one we get (by using (B.10))

P(M,N, t) = p
N(N+1)

2 (−1)

[

N
2

]

0!1! · · · (N −1)!

t−1
∑

t1,t2,... ,tN=0

t0
1 t1

2 t2
3 . . . tN−1

N

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

D0(M −1; t1) D0(M −2; t1) · · · D0(M −N; t1)

D0(M −1; t2) D0(M −2; t2) · · · D0(M −N; t2)

...
...

...

D0(M −1; tN ) D0(M −2; tN ) · · · D0(M −N; tN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(41)

Using the explicit form of D0 (B.8) one arrives at

P(M,N, t)= pMN(1−p)−MN+ N(N+1)

2 (−1)[
N
2 ]

0!1! · · · (N −1)!(M −1)!(M −2)! · · · (M −N)!

t−1
∑

t1,t2,...,tN =0

(1−p)
∑N

j=1 tj t0
1 t1

2 t2
3 . . . tN−1

N

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t1(t1 −1) · · · (t1 −M +2) t1(t1 −1) · · · (t1 −M +3) · · · t1(t1 −1) · · · (t1 −M +N +1)

t2(t2 −1) · · · (t2 −M +2) t2(t2 −1) · · · (t2 −M +3) · · · t2(t2 −1) · · · (t2 −M +N +1)

.

.

.
.
.
.

.

.

.

tN (tN −1) · · · (tN −M +2) tN (tN −1) · · · (tN −M +3) · · · tN (tN −1) · · · (tN −M +N +1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= pMN(1−p)−MN+ N(N+1)

2 (−1)[
N
2 ]

∏N
j=1(j −1)!(M − j)!

t−1
∑

t1,t2,...,tN =0

(1−p)
∑N

j=1 tj t0
1 t1

2 t2
3 . . . tN−1

N

×
N
∏

j=1

tj (tj −1)(tj −2) · · · (tj −M +N +1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

tN−1
1 tN−2

1 · · · 1

tN−1
2 tN−2

2 · · · 1
.
.
.

.

.

.
.
.
.

tN−1
N tN−2

N · · · 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= pMN(1−p)−MN+ N(N+1)

2

∏N
j=1 j !(M − j)!

×
t−1
∑

t1,t2,...,tN =0

N
∏

j=1

tj (tj −1)(tj −2) · · · (tj −M +N +1)(1−p)tj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

tN−1
1 tN−2

1 · · · 1

tN−1
2 tN−2

2 · · · 1
.
.
.

.

.

.
.
.
.

tN−1
N tN−2

N · · · 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

. (42)
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Finally we get

P(M,N, t) = pMN(1−p)−MN+ N(N+1)
2

∏N
j=1 j !(M − j)!

×
t−1
∑

t1,t2,··· ,tN=0





N
∏

j=1

(

M−N−1
∏

k=0

(tj −k)

)

(1−p)tj





∏

i<j

(ti − tj )
2.

(43)

One can see that in the limit t = t̃/p,p→0, t̃ = const. (43) is equivalent to
(22) as expected.

Expression (43) can be written as

P(M,N, t)

=Z(M,N)−1
t−1−M+N
∑

t1,t2,··· ,tN=0

N
∏

j=1

((

tj +M −N

M −N

)

(1−p)tj
)

∏

i<j

(ti − tj )
2. (44)

In the latter form P(M,N, t) is similar to the same quantity of the usual
discrete time ASEP (DTASEP) (see Proposition 1.3 of ref. 6), namely:

P(M,N, t)=PDTASEP(M,N, t +N −1). (45)

This correspondence can be seen in a graphical representation of the
dynamics (Fig. 1). The statistical weight coming from the path of the first
particle is the same in both processes since its dynamics is identical in the
two cases. The weight of the path of the N th particle from 0 to t is the
same as that of the normal DTASEP from 0 to t +N − 1 which explains
the relation (45). However, this correspondence is valid only in the case of
this special initial condition.

From the geometric interpretation it follows that (45) is valid for all
values of M and N , although we derived this (on the level of formulas)
only for M �N (note that Proposition 1.3 of ref. 6 as well as (44) is valid
only for M �N ). The DTASEP has particle-hole symmetry which implies

PDTASEP(M,N, t)=PDTASEP(N,M, t), (46)

from this we get

P(M,N, t) = PDTASEP(M,N, t +N −1)=PDTASEP(N,M, t +N −1)

= P(N,M, t +N −M). (47)
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Fig. 1. The first figure shows a possible history of three particles from time 0 to time t .
We adjust probability p to the diagonal lines (thick solid lines) which correspond to parti-
cle hopping. The weight of the thick dashed vertical lines is 1 −p while the thin solid verti-
cal lines have weight 1. The second figure shows the corresponding path configuration of the
DTASEP. The path of the second (third . . . ) particle is shifted by one (two . . . ) time steps.

3.3. Asymptotic Form of the Distribution Function

Knowing the derivation of the asymptotic form of PDTASEP(M,N, t)

(see Section 3 of ref. 6) it is rather easy to obtain similar results for this
process. We repeat the result of Johansson for the discrete-time TASEP
with parallel update with our notations:

lim
N→∞

PDTASEP

(

[γN ],N,NωDTASEP(γ,p)+N1/3σ(γ,p)s
)

=FGUE(s)

(48)

with

ωDTASEP(γ,p)=
(

1+√(1−p)γ
)2

p
+γ, (49)

σ(γ,p)= (1−p)1/6γ −1/6

p

(√
γ +

√

1−p
)2/3 (

1+
√

(1−p)γ
)2/3

. (50)
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This formula is derived for γ �1 in ref. 6 but it is easy to show that it is
valid also for 0<γ <1. Using (46) one gets

lim
N→∞

PDTASEP

(

γN,N,NωDTASEP(1/γ,p)γ +N1/3σ(1/γ,p)γ 1/3s
)

=FGUE(s), (51)

which is identical to (48) since ωDTASEP(1/γ,p)γ = ωDTASEP(γ,p) and
σ(1/γ,p)γ 1/3 =σ(γ,p).

To obtain the corresponding asymptotic result for the fragmentation
process one goes through the same steps as ref. 6 (or simply use (45)) and
(48). One finds

lim
N→∞

P
(

[γN ],N,Nω(γ,p)+N1/3σ(γ,p)s
)

=FGUE(s) (52)

with

ω(γ,p)=
(

1+√(1−p)γ
)2

p
+γ −1=

(
√

1−p +√
γ
)2

p
. (53)

This result is valid for any γ > 0. The corresponding identity is
ω(1/γ,p)γ −1+γ =ω(γ,p). We remark that the amplitude σ of the devi-
ation is the same for both models. Using (5) this result translates into the
expression for the distribution of the integrated current as

lim
t→∞ Prob

[

J (vt, t)>η(v,p)t −κ(v,p)t1/3s
]

=FGUE(s) for 0<v <p (54)

with

η(v,p)= 1
p

(√
1−v −

√

1−p
)2

(55)

and

κ(v,p)=
(1−p)1/6(1−v)1/3(p −v)2/3

(

p
√

1−v +v
√

1−p
)2/3

(√
1−v +√1−p

)4/3 (

p
√

1−v +v
√

1−p −v(1−p)
)
. (56)
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Equivalently one obtains for the distribution of the height

lim
t→∞ Prob

[

h(vt, t)>(2η(v,p)+v)t −2κ(v,p)t1/3s
]

=FGUE(s) for −p/(1−p)<v <p. (57)

4. CONCLUSIONS

We have shown that the distribution of the time-integrated current
for the TASEP as well as for the totally asymmetric fragmentation pro-
cess can be written as a determinant (34) obtained using Bethe ansatz.
To show this one uses a determinant representation of the Bethe wave
function which solves the master equation for a finite number of particles.
After appropriate scaling the current distribution is given by the distribu-
tion of the largest eigenvalue of a random matrix ensemble. This observa-
tion may lead to better understanding of the relation between the random
matrix theory and the Bethe ansatz and suggests that also other integrable
hopping processes may be treated in a similar fashion. The main task that
remains is the derivation of suitable determinant representations for condi-
tional probabilities for such processes. In the scaling limit of the fragmen-
tation process the distribution of the time-integrated current around its
mean converges to the same Tracy–Widom distribution for the Gaussian
unitary ensemble found previously for the TASEP, thus confirming univer-
sality of this quantity.

APPENDIX A: F FUNCTIONS

Definition:

Fp(n; t) = 1
2π

∫ π

−π

e−(1−e−ik)t
(

1− ei(k+i0)
)−p

eikn dk, (A.1)

= 1
2πi

,

∮

|z|=1−0
e−(1−z−1)t (1− z)−pzn−1 dz. (A.2)

Differentiation, integration:

d

dt
Fp(n; t) = Fp−1(n−1; t), (A.3)

∫ t2

t1

Fp(n; t) = Fp+1(n+1, t2)−Fp+1(n+1, t1). (A.4)
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Summation:

n2
∑

n=n1

Fp(n; t) = Fp+1(n1; t)−Fp+1(n2 +1; t), (A.5)

Fp(n; t) = Fp+1(n; t)−Fp+1(n+1; t), (A.6)
∞
∑

n=n1

Fp(n; t) = Fp+1(n1; t). (A.7)

For p �0 and n�0:

Fp(n; t)= e−t

−p
∑

m=0

(−1)m
(−p

m

)

tm+n

(m+n)!
. (A.8)

Fp(n; t) can be written as a (finite or infinite) sum also in other regions
of the (n,p) parameter space (see ref. 17) but those formulas are not used
here.

For n�0 (and any p):

Fp(n;0)= δn,0. (A.9)

APPENDIX B: D FUNCTIONS

Definition:

Dq(n, t)= 1
2π

∫ 2π

0
dk
(

1−p +pe−ik
)t (

1− ei(k+i0)
)−p

eikn, (B.1)

= 1
2πi

∮

|z|=1−0
dz

(

1−p + p

z

)t

(1− z)−qzn−1. (B.2)

Discrete time derivative and summation for t :

Dq(n, t +1)−Dq(n, t)=pDq−1(n−1, t), (B.3)
t2
∑

t=t1

Dq(n, t)= 1
p

(

Dq+1(n+1, t2 +1)−Dq+1(n+1, t1)
)

. (B.4)
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Summation for n:

n2
∑

n=n1

Dq(n; t)=Dq+1(n1; t)−Dq+1(n2 +1; t), (B.5)

Dq(n; t)=Dq+1(n; t)−Dq+1(n+1; t), (B.6)
∞
∑

n=n1

Dq(n; t)=Dq+1(n1; t). (B.7)

Explicit form of Dq(n, t) for n, t �0:

D0(n, t)=









0, t <n,
(
t
n

)

(1−p)t−npn, 0�n� t,

0 n�0,

(B.8)

Dq>0(n, t)=
∞
∑

j=0

(

q + j −1
j

)

D0(n+ j, t), (B.9)

Dq�0(n, t)=
−q
∑

j=0

(−q

j

)

(−1)jD0(n+ j, t), (B.10)

Dq(n,n)=D0(n, n)=pn. (B.11)
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Note added: After completion of this work we learned that the result
of Section 2.2. has been found also by Nagao and Sasamoto.(23)
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